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CONTRIBUTIONS TO THE THEORY OF
DIOPHANTINE EQUATIONS

II. THE DIOPHANTINE EQUATION y*=x%-+£

By A. BAKER
e Trinity College, Cambridge
—ad
’:é (Communicated by H. Davenport, F.R.S.—Received 24 August 1967)
> :
é ~ CONTENTS
4 E PAGE PAGE
E O 1. INTRODUCTION 193 4. ON THE LOGARITHMS OF ALGEBRAIC
= g 2. ON THE REDUCTION OF BINARY CUBIC NUMBERS 200
FORMS 195 5. PROOF OF THEOREM 2 204
3. ON THE UNITS OF ALGEBRAIC NUMBER 6. COMPLETION OF PROOF OF THEOREM 1 207
FIELDS 199 REFERENGES 207

This paper is a sequel to Part I (Baker 1968) in which an effective algorithm was established for
solving in integers x, y any Diophantine equation of the type f(x, y) = m, where f denotes an irre-
ducible binary form with integer coefficients and degree at least 3. Here the algorithm is utilized
to obtain an explicit bound, free from unknown constants, for the size of all the solutions of the
equation. As a consequence of the cubic case of the result, it is proved that, for any integer £ = 0,
all integers x, y satisfying the equation of the title have absolute values at most exp{(10°|£|)10}.
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1. INTRODUCTION

The problem of finding the totality of integers whose cubes differ by a given integer from
a square has interested mathematicians for several centuries. According to Dickson’s
History of the theory of numbers researches on the subject can be traced back at least as far as
Bachet (1621), and numerous contributions to the general theory can be found in the works
of Fermat, Euler, V. A, Lebesgue, Pepin, Jonqui¢res and many others. More especially,
during the past fifty or so years, the equation of the title has been extensively investigated by

Y B \

— Mordell (1913, 1914, 1922, 1923, 1963, 1964 and see, in particular, 1947: A chapter in the theory
§ S of numbers), Nagell (1929, 1930), Delaunay (1929),t Ljunggren (1942, 1963) and Hemer
olm (1952, 1954),} and a complete set of solutions in integers has now been obtained for large
~ = classes of values of k; these include, for example, all & satisfying 0 < |k| < 100, except for 20
E O special cases.| The methods of solution vary widely according to the specific £ under dis-
— 8 cussion, but they usually involve a combination of congruence techniques, together with a

detailed study of the arithmetic of certain underlying number fields. In addition, the argu-
ment often utilizes the well known connexion between the equation of the title and equations

T See also Delone [Delaunay] & Faddeev (1940).

1 See also Skolem (1938), Marshall Hall (1953).

I An extensive theory has also been developed in connexion with rational solutions; cf. Cassels (1950,
1966), Selmer (1956).
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194 A. BAKER

where f denotes an irreducible binary form with integer coefficients and degree at least 3,
and m denotes a fixed integer. In particular Mordell (1922, 1923)1 has employed this
feature, together with the famous theorem of Thue (190g), to show that, for any % = 0, the

equation y2 =3+ k (2)
has only a finite number of solutions in integers #, y. No general algorithm, however, has
hitherto been established which would enable one to find all the solutions of (2) for any
prescribed £.

In a recent paper (Baker 1968)1 a new proof of the finiteness of the number of solutions
of (1) was given, which, in contrast to Thue’s original proof, proceeds by an argument that
is effective and provides therefore a process for determining all solutions of the equation in
integers «, y. Moreover, it was remarked that, in consequence of this result, one could now
obtain an effective algorithm for the complete solution of (2) in integers «, y, and it is the
purpose of the present paper to supply the details of the demonstration. The precise result
that will be established is as follows.

THEOREM 1. For any integer k == 0 all solutions of (2) in integers x, y satisfy
max (|x[, |y]) < exp {(1017]k])!*"}.

Although some care has been taken to obtain numerical constants reasonably close to the
best that can be acquired with the present method of proof, there is, nevertheless, little
doubt that the numbers on the right of the above inequality can be reduced to a certain
extent by means of minor refinements. In particular it will be seen that several of the
numbers occurring in our estimates have been freely rounded off in order that the final
conclusion should assume a simple form, and so some obvious improvements are immedi-
ately obtainable. Furthermore, although at first glance it may appear that the magnitude
of the bound furnished by theorem 1 precludes any possibility of practically computing the
complete list of solutions of (2) for a given relatively small value of £, the methods used in
the proof of the theorem, together with some additional techniques relating to continued
fractions, would seem in fact to make the computation feasible, though possibly long. The
rate of increase of the bound given by theorem 1 with respect to £ is also worth noting; the
degree of precision is perhaps best illustrated by expressing the assertion in the form

49 —42] > 10719(log x)10"",

the range of validity of this inequality extending to all positive integers x, y with x* = y2
The first stage in the proof of theorem 1 rests on the theory of the reduction of binary
cubic forms which finds its genesis in Hermite’s famous memoir of 1848; the exposition of
the present paper will follow the modified approach developed by Davenport (1945) for
another purpose, which is slightly simpler and leads to more precise numerical constants.
By combining this theory of reduction with the techniques of Mordell (1913), there will be
established (see § 2) a quantitative formulation of the connexion mentioned earlier between
the solutions of (2) and those of certain equations of the type (1); it will remain then only
to apply the work of B. In the argument of the latter paper, however, there occurred various
constants which were said to be effectively computable but for which, in fact, no explicit

t See also Thue (1917), Landau & Ostrowski (1920), Siegel (1926).
I The paper will be referred to as B.
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THE DIOPHANTINE EQUATION y? = x3+% 195

values were specified. The detailed calculation of these constants occupies the main part of
the present work, and the ultimate theorem that will be established is as follows.

THEOREM 2. Suppose that f(x,y) is an irreducible binary form with degree n = 3 and with integer
coefficients having absolute values at most S . Suppose also that k > n+-1, and let m denote any positive
integer. Then all solutions of (1) in integers x, y satisfy

max (|x], [y ]) < exp {2+ (logm)"s,
where v = 32nk%[(k—n—1).

It will be assumed that the reader is familiar with the work of B, and only a minimal
amount of the discussion of that paper will be repeated here. In order to obtain the con-
clusion in the form enunciated above, however, it has been necessary to modify the previous
argument to some extent, and in particular it has proved advantageous to re-define one of
the basic parameters. Nevertheless, it will be seen that the primary exposition of B is not
substantially altered. Preliminary to the proof of theorem 2, certain auxiliary results will
be required concerning the units of algebraic number fields, and § 3 is devoted to an account
of their derivation.

If logm < # then clearly the best value (or substantially the best) to assign to « in
theorem 2 is 2742, and one deduces easily that all solutions of (1) in integers x, y satisfy

max (|x[, |y |) < exp{(n#)00}.

Asindicated in the earlier context, some diminution in the values of the constants is certainly
possible here, and, in fact, in the proof of theorem 1, a slightly sharper form of this result
has been employed. But the best possible choice for the parameters occurring in the deriva-
tion of theorem 2 will inevitably vary a little according to the particular application one
has in mind, and it may well be profitable to re-work the proof to a certain degree if, for
example, one has some additional information concerning the binary form f.

2. ON THE REDUCTION OF BINARY CUBIC FORMS

It will be proved in §6 that if f(x,y) denotes an irreducible binary cubic form with
integer coefficients having absolute values at most s then all solutions in integers x, y of

f(xay) =1
satisfy max (|x|, |y]) < exp{(105#)15x10°),

The result is employed in the present section to establish theorem 1.

Let £ denote any integer other than 0 and suppose that x, y are integers satisfying (2). It
can be assumed, without loss of generality, that x > 0, y > 0, for clearly, if x < 0, then
|%| < |k|* and so theorem 1 is certainly valid. We denote by f(X, Y) the binary cubic form

X3—3xXY2—2yY3.

It will be observed immediately that, by virtue of (2), the discriminant Z of fis given by
—108k. We proceed now to prove that f can be reduced by an integral unimodular substitu-
tion to a binary cubic form f” in which each coefficient has absolute value at most |2 |%.
Two cases are distinguished according as £ < 0 or £ > 0.
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196 ‘ A. BAKER
(1) Suppose first that £ < 0. Then the quadratic covariant of (X, Y), defined by

F(X,Y) = i{(%gy)z—aﬁ%%} — 9(x X242y XY +227?),
has positive discriminant 3% and is thus positive definite. Hence there exists a substitution
X=pX'+qY, Y=1rX+sY

with integer coefficients p, ¢, 7, s satistying

ps—qr =141
which transforms F(X, Y) into

F(X,Y)=A4AX*+BX'Y' +CY",
where 4, B, C denote integers satisfying
0<B<A<C.
Let (X, Y) =aXB3+bX?Y +cX'Y'?4-dY"3
denote the corresponding transform of f. Then by the covariant property of ¥ we have

P2 - S

—1\ox"9y’) T X209y
whence A=b>-3ac, B=bc—9ad, C=c>—3bd.
Now since 4AC—B%2 =32 >0

and B < (AC)t we see that AC < 2. Further we have

2 |be| (AC)E < Ac?+ Cb? = AC+ Bbe < ACH|be| (AC)}
and thus lbe| < (AC)E < 2%,
Also it is clear that 9|ad| = |bc— B| < 29%,

and the required bound for the absolute values of 4, b, ¢, d follows immediately, provided
that none of the latter is 0. The cases in which this condition does not hold are easily treated.
If, for example, d = 0 then

A=0b*—-38ac, B=be, C=c?

and since 4 = 0, C &= 0 we have
|b| < B< 2%, o] =Ct < 2%

Also 3ac < b2, and from B < C we deduce that 5| < |¢| and thus |a| < [¢|. This proves the
assertion when d = 0, and the other cases follow similarly.
(ii) Suppose that £ > 0. Then we have

fX,Y) = (X+0Y) F(X,Y),

where # is real and F(X, Y) denotes a positive definite quadratic form. By a substitution of


http://rsta.royalsocietypublishing.org/

s |
PN

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THE DIOPHANTINE EQUATION g2 =x3+4£ 197
the type specified in (i), f(X, ¥Y) can be transformed into
SI(&LY) = (X' +4Y) ' (X, '),
where, on adopting the above notation for ', 4, B, C now represent real numbers satisfying

—4A<B<A<C
and ¢ > 0. Clearly we have

a=A4, b=¢A+B, ¢=¢B+C, d=¢C

and —9 = (44C—B?) (Ap>—Bp+C)2.
Now since AP2—Bp+C = A(P*—9)+C > C—14 = 3C
and also 4AC—B? > 3AC

we see that AC3 < |2|. Thus, on noting that 4 is a positive integer, we obtain
Cc<(|21/4) |Bl<dA<|o],

and, since |2| > 108, it follows immediately that 4 < 1|2|* and C < }|2|}; moreover, in
the latter inequality, 4 can be replaced by % unless 4 < 83/|2|* (< 8). Now if ¢ < 2 then
obviously we have the required bounds for the absolute values of q, b, ¢, d. But the assertion
holds also if ¢ > 2, for then ¢>—¢ > 342 and thus

|2| = 34C(34¢°+C)?;
in particular we see that |2| > 3(4C¢)? and so
|d| = C¢ < |2};
further we have |2| = 34C(4¢4+C)?,
whence max (|, |¢]) < A¢+C < |2]t.

We now utilize the substitution derived above to prove theorem 1. It is necessary to
distinguish two cases according as f” is or is not reducible.

(I) Suppose that f” is irreducible. On equating the coefficients of X? in the equation
S (sX—=q¥, —rX+pY) = +f(X, Y) (3)
we obtain as3—bs?r+csr2—drd = £ 1. (4)
Hence by the result enunciated at the outset and the supposed irreducibility of f’, we
deduce immediately that max (|7], |s]) < M,
where M = exp{(10°|2|}¥)15x10%,
Further, on differentiating the identity
F X +qY', 1X 45Y) = f (X, Y')
with respect to X', substituting X’ =, Y = —r1, and recalling that fincludes no term in

2
X?Y, we see that 3p — 3as®— 2brs - or”.

25 VoL. 263. A.
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198 : A. BAKER

Hence we have 15l <2|2|t M,

and the same inequality is valid with p replaced by g. Now on equating the coefficients of
XY?in (3) we obtain

3(drp?—asq?) +2pq(bs—cr) + brg® —csp® = 4+ 3x,
and it follows easily that 3x< 12|22 M(2|2|: M?)2.
Further, on equating the coefficients of Y3 in (8) we get
ag*—bpg*+cp*q—dp* = -2
- and thus 2 < 4|21 (2|2t M?)3.
Hence we see that  max (x,y) < 1622M6 < exp {(10° |2 |¥)16x10°},

and theorem 1 follows immediately on writing |2 | = 108 |£|.

(II) Suppose that f” is reducible. Then there exist relatively prime integers u, v (possibly

1,00r 0, 1) such that au3——buzv—l—cuvz~dv3 = 0. (5)

Without loss of generality we shall suppose that » == 0. Since obviously z and v each divide
some non-zero coefficient a, b, ¢, d, we have

lul < |2]t, o] < |22
Now, as in (I), we see that 7, s satisfy (4), and on multiplying (4) by 3, (5) by 3 and

subtracting, we obtain UV = 103,

where U =uvs—ur,
V = (au?— buv+ cv?) r?+ (au— bv) vrs+ av?s2.

Since U, V divide 3 we have
vl <l2l}, [V]<|2|

Further we note that ¥ can be written in the form
(8au?—2buv+ cv?) r24 (3au—bv) rU+alU?,

and the coefficient of 72 here cannot be 0, for otherwise (v.X”4-uY")% would divide f' (X", ¥")
and so the discriminant — 108k of /" would vanish. Thus, if 4= 0, we obtain

7% < |U|{|r(3au—bv)| +|aUl}+| V] < ]r| |2
and hence Ir| < 6|2|.
A similar inequality holds with 7 replaced by s, and so certainly
max (|, Is]) < M,

where M is defined as in (I). The argument now proceeds as before.
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THE DIOPHANTINE EQUATION g2 = x°+% 199

3. ON THE UNITS OF ALGEBRAIC NUMBER FIELDS

Let ¢ denote an algebraic integer of degree n and let a(), ..., & denote the conjugates of «
arranged so that o), ..., a® only are real and a®¢*D, ..., a¢*9 are the complex conjugates of
ot a® respectively; thus it is implied that n = s+ 24 Let K denote the algebraic
number field generated by « over the rationals and let 00, ..., #® denote the conjugates of
any element § of K corresponding to the conjugates o), ..., a® of a. Further, let D denote
any number which exceeds the absolute value of the discriminant of «, that is

I |ao—a0)2,

1<i<j<n
In this section we shall prove that there exist r = s+¢—1 units #,, ..., 7, in K such that

log |7}]| < $logD (1 <j,k<r7,j=+k) (6)
and rllog D <log |7 | < 2(r!41) D@*D2]log D (1 <k < 7). (7)

Units with these properties will play a fundamental réle in the subsequent work.
We note first that for any positive numbers A, ..., A, there exists an algebraic integer 6 of
K such that LD < 00| <X, (1<j<r)
and |norm 0| < D#.
To verify this assertion we define A, as
Di[(A;...A) or DA, ..., A%,,...22)}
according as ¢ = 0 or ¢ == 0, and we observe that, by Minkowski’s theorem on linear forms

(see, for example, Cassels 1959, p. 73, theorem III) there exist rational integers x,, ..., x

not all 0, such that ; .
0 < (1<j<o),

nd

RO <A1, |00 A2 (541 <j<s+0),
where 0 = x;+ x50+ ... +x,0" 1

the hypotheses of Minkowski’s theorem are satisfied, for it is easily seen that the absolute
value of the determinant of the linear forms on the left of these inequalities does not exceed
2-tD¥ and this is precisely the product of the constants on the right. Now the inequalities
obviously imply that |#9| < A; (1 <j < r+1), and so certainly

|norm 0| < D3.
Since also |norm @] =1
we see that |09 = 4[4y oo AA2, 1. A2,,) = A;/DE,

and thus 4 has all the required properties.
Now let £ denote any integer satisfying 1 < k¥ <7, and for each [ = 1,2, ... let ,, denote
the element 6 of K corresponding as above to the set of positive numbers

N=D (1<j<rj+k), =D+

25-2
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200 A. BAKER

By vi i ' :
y virtue of the inequality Inorm 6, < D*,

we see that among the numbers 6, with 1 < [ < [D#]**1+1 there is at least one pair 0, and
0, with I” > {" such that the norms of #,,. and 6, have the same absolute value, say N, and,
further, the corresponding integers xj and ] satisfy

x;=x (modN) (1<j<n).

On writing 5, = 0,,/0,,, we see that norm#, = -+ 1, and since both
¢ = (Ogy—0x)/N and N[O

are algebraic integers in K, we deduce that also

ny =1+ N[0

is an algebraic integer in K. Hence #, is a unit in K, and it remains only to verify (6) and (7).
But now (6) is clear, for if j & £, then log |6%| and log |0§}| each lie between }log D and
log D, and (7) is valid since obviously

log |07 —log | 0|
is not less than {(r'4+1) (' =1")—%}log D,
and cannot exceed (r!+1)'log D.

This completes the proof of the initial assertion.

4. ON THE LOGARITHMS OF ALGEBRAIC NUMBERS

Henceforth it will be assumed that the reader is familiar with the work of B. The object
of the present section is to prove that a suitable value for the number C'specified in theorem 4

of B is given by CVr = 8 max{(pg)?, 2t#nd~1d"log (dB)}, (8)
where B =max (4,4',4,,...,4,_,)
and p = 8nk(k+n+1)/(k—n—1).

To obtain the conclusion in this form several modifications to the arguments of §§ 3, 4 and 5
of B have been introduced. Nevertheless, the basic structure of the exposition remains
essentially unaltered, and it will suffice therefore to give an account only of those points in
the discussion which differ from their counterparts given previously, or which require
a more detailed consideration.

The definitions given in § 3 of B remain unchanged, except that we now specify % by the

equations k—[HE, h—[k],

and we suppose that 0 < 1. It is assumed that (10) of B holds, where Cis given by (8), and
we proceed to prove that H is then sufficiently large for the validity of the subsequent
argument. It will be noted immediately that p, as defined above, can be expressed alterna-
tively as 4(ef)~! and so, since H > C, we have

h>ke—1 > 2H 1 > LH¥,
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THE DIOPHANTINE EQUATION y? = #%+k 201
Thus we see that 2 > 1CV», whence  h > (2pg)?, (9)
and also h > 24r+2p5-1Dlog (dB) (10)

(where D = d*, as in B). Frequent allusion to (9) and (10) (and more especially to the
latter inequality) will be made throughout the later discussion.

The narrative which follows is partitioned to correspond to the lemmas and the final
deduction as given in B.

Lemma 1. Unchanged.

Lemma 2. A slightly stronger form of the result is established in which / extends over the
range 1 <! < Dhin place of 1 < /< h.

First, we note that a suitable choice for ¢, is 2B. Further we observe that the new value
for U can be taken as (2B)"Ph(24) I Dh(QL HEF,

Since now M < D?(k+1)""1h, the inequality N > 2M will be satisfied provided that
k¢ > 2nD?h, and this condition is certainly valid for we have k¢ > A* andt p > 46n(n+1). By
virtue of the latter inequality we see that & > 2!%, whence 4* > 2log (4/) and thus, by (9),

eth > (4h)t > (4h)2P2 > (2k)%/C > Hetl,
in confirmation of (19) of B. The bound NU < e"* follows from (18) and (19) of B, on
noting that, by (10) and the inequality L < kh™%, we have
kr < etk 2Dk'-m¢ < 1k, nDLlog (4B) < k.

A suitable choice for ¢4 is clearly given by (4dB)2. Also we observe that

|log ;| < {(log |o;|)2+ 72} < 4log (dB) (1 <j < n).
Thus we can take ¢, as (4dB)", and we have then ¢§ 22" < e}, To confirm the final assertion
we note that ¢? < e and so (15) of B holds provided only that H > 80~14%; and the latter
condition is satisfied since H > k¢ > h# and { < 4.

Lemma 3. 1t is shown that suitable values for ¢; and ¢4 are given by (dB)%" and 2(dB)?*
respectively.

The value for ¢, is easily verified for, by virtue of the bound for |loga,| noted above,
¢, and ¢, can be taken as (dB)°® and 4 log (dB) respectively, and obviously both £” and ¢§ do
not exceed e***.

To confirm the value for ¢ we note first that ¢, can be taken as (¢B)%"~D, whence by (18)
of B and the inequality k" < €3 we see that an appropriate choice for ¢, is (¢B)?". Further
it is clear that ¢;; can be defined as ¢3¢, = (4dB)"*2. Since

Ll < hkWo-t¢ < H'"VP and H>C
we have then ¢l et ~9H < ¢~#H and the subsequent deduction arising from this inequality
is easily verified. A suitable value for ¢, is B»~!, and, since 4% < e < B, we see that t1s
can be taken as B~. Further, an appropriate choice for ¢ is obviously 4 log (dB). To calculate
¢,4 we note first that
|a;—1| = |e!8—1]| < [logay| e!'8%! < [loga| (dB)Y,
and, secondly, that each conjugate of «; —1 has absolute value at most 2dB. Also, in view

t For a given n, the smallest value assumed by p is 8(3+24/2) n(n+1), the value being attained when
k= (1+42)(n+1).
25-3
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202 A. BAKER

of the hypothesis of theorem 4, we have a; & 1 and so [norm («;—1)| = B~!; this gives
[loga;| = (24B)~%*, whence ¢;, can be defined as (24B)?*4. We observe next that e* > ¢,,,
¢10 > ¢;5 and thus an appropriate choice for ¢4 is ¢;, = (dB)?". To complete the discussion
of lemma 3 it suffices now to verify that 2 e2P%, ¢PLl and ¢k; are all less than e*#, and this
follows easily on noting again that L/ < H-Vr, hk < H* and H > C.

Lemma 4. The assertion is modified slightly so that, when J = 0, the range for / reads
1 < ! < Dh. The conclusion remains valid in this case in view of the strengthened version
of lemma 2.

The definitions introduced in the course of the proof remain unaltered except that R, is
now taken as D/ instead of 4 and the radius of I'is specified as R,/ instead of Ry, log .

The first inequality requiring verification occurs in (27) where it is asserted that

h < H¥-+D0;
this is obviously valid, for we have
1= (n1)8 = dncp
and H > k. Further, in order that the next displayed set of inequalities should hold, we
require H(8n)* < e*?# and this is again readily confirmed since £ < H*. Furthermore, the
inequality R, ; < H occurring at the beginning of the next paragraph is valid, for obviously
we have ik*¢~1 < 1. It is then necessary to confirm that

Ry(Sg+1) < §H]log H;
by (27), this holds if H-(D8 ~ 8h§-llog H.

But as above we see that the number on the left is at least £*%, and, since H < (4/4)*, the
number on the right is at most 8p/d~!log (44) ; the inequality now follows easily from (10).
The bound expressed by | f(/)| > 2 e~3H is verified by observations similar to those recorded
at the end of the discussion of lemma 3.

In view of the change in the radius of I' introduced earlier, we now have

O = (LR, h)RsSru+D  and 0 < ek chRenih,

Further, since ¢ < ¢;, we see that the bound asserted for ¢ | f(/)|~! is valid. Thus it remains
only to consider the inequality (32). This now reads

log 4+ (D+1) {2hk+c;; LRy, I} = Ri(Sy11+1) log (3),
where ¢;; = log¢;. When K = 0 we obtain
log 4+ (D+1) (2kk+c; k) = $Dhklog (3h).

But on recalling that ¢; = (dB)%" it follows easily from (10) that the number on the left is at
most 8 Dkk, and, sincelog (44£) > 23, thisis clearly incompatible with the number on the right.
When K > 0 we obtain

log 4+ (D 1) {2hk+c,, k¥eK+1} > 9-U+Dfkdek+1 og (14).

Now K < 7—1 < p (since n—1 < {~1) and, on noting again that log (}#) > 25, it follows
easily that the number on the right exceeds 2-2#+34keX+1, But we have k¢ > A2 and, by (10),

h > 2t=l¢. D.
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Hence the inequality is inconsistent also in the case when K > 0, and the discussion of
lemma 4 is complete.

Lemma 5. A slightly sharper result is established in which logk on the right of (33) is
replaced by 27. i

Theinteger Y specified in the proofis now defined as [£/27+1], and the radius of the circle I
is taken as X% instead of Xlogk. The first inequality requiring verification, namely
(8n)*+2H < et?H_is easily seen to hold (cf. lemma 4). The lower bound for |Z| now reads
($Xh)XT*+D and the upper bound for £ is now given by e?* ¢LX% Thus the two terms log &
appearing in the upper bound for |¢(w)| must now be replaced by 4. Further, we now have

2XYlog (2X) < 2¢(7—1) kter-D+l]ogk,
But 2¢(1—1) < 4{"1, logk < {log H and
Jher=D+1 < FIH@DEAD — FJ1-4nkip,
whence the number on the right does not exceed {dH (again cf. lemma 4). Also, since
Lh< kb3, wehave 4y 1y pjori2 s gjobe+3 = Lhloge,
and clearly 1X(Y+1) > 2hk+log 2.
Thus we obtain |p(w)| < (Fgh) XX+D 4 e~ ¥0H;
and the number on the right is at most 2~#¥¥+D_for it is easily seen that
X(Y+1)logh < 30H.
For the last part we use the inequalities
Jl4 < (4hn)F < eRrtd
Since, from (37) of B, 1X(YH41) > kper-Dr1[r+4 ~ fntd
we deduce easily that |;(0)] < A 4X@+D),

and the modified form of (33) follows by virtue of the estimate log z > 25,

Lemma 6. A suitable value for ¢y, is (dB)?"P. For clearly the absolute value of each conjugate
of w is at most 2(dB)2"~DT4214l whence ¢,, can be taken as (dB)?*. Further, a suitable value
for ¢y, is given by B". Thus, if |W| < 1, we have

lw| < |W|eBrTAlt < |W| el Altel,
and the asserted value for ¢,, follows immediately.

Final deduction. By the bound for |loga,| given above, we see that a suitable value for ¢,
is 4nlog (dB). Since, by (11) of B,

[y1logay+ ... +y, 1 loga, | < [¢,|+Le " < 8nLlog (dB),
we deduce that ¢,, can be taken as 16nlog (dB). To show that
|¢,(0) —W;| < e~#0H
we observe first that (R41) (¢4 L) < (32nlog (dB))® < AR
and 4k < 10H. Thus it suffices to verify that Rlog # < 20H; but this certainly holds, for we


http://rsta.royalsocietypublishing.org/

s |
PN

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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have R < H%, { < 1/(n+1) and HY"*D > 4§-1logh. In accordance with the modified
form of lemma 5, the term log £ in (38) is now to be replaced by 2.
Thelower bound asserted for |y, — | is at least (dB)~2"P* e~%, since, by (18) of B, we have

2DL,log A < 4Dk'~me < k.

It follows easily that a suitable value for ¢,; is 4nD log (dB). Clearly ¢,5 and ¢y, can be taken
as 2 and 3 respectively. On replacing log £ in the inequality for log|p, A, (¥,)| by 27, and

noting also that 1,0 (1) 1 Rlog (c,0k) < 2k7logk < kr+1/27+2,

we see that the asserted upper bound for log |A,(¢,)| is valid, again with 27 in place of logk.
Thus the final conclusion holds if
Jetr=D1/or8 o fnt1

that is if FHAO-0+D) ~ 9145 n D ]og (dB).

But 7 < $p+1 and the number on the left can be expressed as £« = k4, The validity of
the inequality is now obvious, and the proof of the opening assertion is complete.

To conclude this section we observe that, by virtue of the result just established, an
appropriate choice for the constant C specified in theorem 3 of B is given by

Clp = 24p+5p3-14nlog (dB),

where B and p are defined as above, and where » must be replaced by n+1 if ¢y, ...,«, are
not all real (the substitution of n+1 for n applies to p but not to B). The assertion is easily
verified by a study of section 2 of B. For suppose first that «, ..., «, are all real. Then the
hypotheses of theorem 3 imply that (7) of B holds with «;, ..., a, replaced by ||, ..., |a,]
respectively and with & replaced by £, provided only that e*?# > 4 |a,|~!. Further, by the
arguments following the enunciation of theorem 4, we see that the hypotheses of the latter
theorem will be satisfied with g defined as 2n, with § replaced by 1 and with the basic
algebraic numbers given by some subset of |, ..., |,|, provided that now e > Hn > 2n
and that |loga;| = e #°# for j = 1,2,...,n. Clearly if the above conditions are not satisfied
then the desired conclusion is certainly valid. If, on the other hand, the conditions are
satisfied then the conclusion follows immediately from theorem 4, on observing that, by
virtue of the definition of g, the second term in the expression on the right of (8) is greater
than the first. Note also that, throughout the above discussion, it has been assumed that
8 < 1, and, furthermore, implicit reference has been made to the fact that C increases
monotonically with respect to n, and exceeds (log B)*. A similar argument applies when

&y, ..., %, are not all real, the set now being enlarged by the addition of the algebraic number
«, = — 1, which clearly does not affect the definitions of d or B.

5. PROOF OF THEOREM 2

We now utilize the results obtained in §3 and §4 to establish theorem 2. The discussion
is based on §§6 and 7 of B with which the reader is again supposed to be familiar.

We note first that there is no loss of generality in assuming that the coefficient of x" in
flx,y) is 41, provided that one establishes, in this case, the stronger conclusion

max (|x],[y]) < exp {3+ (logm)*}.
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For it is clear that the absolute values of the coeflicients in the binary form F (X, Y) specified
in §6 of B do not exceed #*, and, with the notation of that section, we have either
log m > 2"*s#", whence, since

vlk > (k4+n+1)/(k—n—1) = «'[(k—K"),
it follows that M < m? and (log M)~ < (logm)*, or log m < 2" and thus
(log M)K < (log M)K < Qrtkgypnk ~ n2u%vn.

The notation of § 6 of B agrees with that given at the beginning of §3 (on writing « = a®)
and we suppose that 7,, ..., 7, are units in K satisfying (6) and (7). We shall not specify C,
explicitly, but shall instead employ (6) and (7) directly at the point in the argument where
C, becomes significant. C, can obviously be taken as the number on the extreme right of (7)
(D being used now in the sense of §3 and not of §4).

We come now to the discussion of § 7 of B, and we note first that a suitable value for Cj is
given by 7%C,. Further we observe that the height of y cannot exceed (1 ¢ %m!/?)", and so
an appropriate choice for C, is €2%, In order to define C; we use the fact that, by virtue of
(6) and (7), the term given by the leading diagonal of A, namely

# = 1Tlog 11,
k=1

exceeds the absolute values of each of the (! —1) remaining terms in the expansion of A by
|-
at least a factor 2r!; thus we have Al > 32.

Also we see that the absolute value of each of the (r—1)! terms in the expansion of any
cofactor of A does not exceed the product of r— 1 numbers from the setlog || (1 <k <7),
and so, by (7), each cofactor has absolute value at most (rlog D)~12. It follows easily that
an appropriate choice for C; is 2(log D)~! (the original designation that C,, C,, ... should
each exceed 1 being disregarded here). On assuming that H > C; C; (the condition to be
discussed later), (44) of B implies that C can be taken as 1, and it follows immediately that
suitable values for C; and Cg occurring in (46) of B are given by e® and nC; respectively.
We have now to estimate the heights of a,,...,a,,;, and for this purpose we make the
preparatory observation that if «, § denote algebraic numbers with degrees at most d,, d,
respectively and with heights at most %7, then a+-£ and «f have degrees at most d = d, d,
and heights at most (4d*)4. This follows easily on noting that a4 and af are zeros of
polynomials of the kind specified in § 6 of B (with d, d, in place of d%) and that

14+ f0) < (14+dy+dy) o, [1+a9B0] < (14d,d,) £,

Now by (6) and (7) it is clear that 7, has height at most (1+¢e) (14 D%¥)7=1  and this does
not exceed €2 if one assumes (as will be amply satisfied later) that D > 10. Thus a suitable
value for Cy is given by !¢, Further, the height of -

(o) — a®) | (ot — al®)

isat most ' = (2n#)'6"°  and if now we assume that #’ does not exceed C,, then appro-
priate choices for C},and C;; will be given by C,(= €2*¢) and 25n8 respectively. Furthermore,
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it is clear that both |«,,,| and |a,, |"! cannot be greater than n%#’'e2%, and thus, if
e > nt#’, a suitable value for C}, is €3¢3. Obviously one can then take C;; = C,.

We observe next that the discriminant of  can be expressed as a Sylvester determinant
of order 2n—1 with elements given by the coefficients of f(x,1) and its derivative with
respect to x. On recalling that the leading coefficient in f(x, 1) is + 1, we deduce easily that
each of the (2z—1)! terms in the expansion of the determinant has absolute value at most
n"#?~%, and thus an appropriate choice for D is n5#2*~2, Since r < n— 1 and clearly also
log D < n#°% we see that

2P A1 < Cy < A,
Further we note that the conditions on 2#’ specified above are satisfied since

Cy > n'8#8 > nlblog (2n#) > log (n*#")
and C, > % > e. Since also Cy = 2n(log D)~! < 4, it is now clear that, subject only to the
condition H > max (C, C;, log (C; C,y)), (11)
all the hypotheses of theorem 3 of B will be satisfied with 4 given by
log A = 25n8(2n3C,+logm),

with B (as defined in § 4) given by e!%** 2, with « replaced by ' = & (k+n+1), with nreplaced
by r+1, with § = 1 and with d = 75. Thus by the result given at the end of § 4 we conclude

that H < M, where M = max {C", (log A)*},
C — {2-%p+5n6n+1 log (nSB)}/’
and p = 8nk' (' +n+1)/(k'—n—1).

Now it is easily verified that p < v, where v is defined in the enunciation of theorem 2, and

thus we see that C' < {2b+6p6n+1]og BY.

Further we have log B = 10n2C, < n¥* 5.},

whence it follows easily that ¢” < C”, where
C" = {Q%VnSnZ%n2~%}V

(C” being used here in a different sense to that indicated in B). Furthermore, the number on
the right of (11) is precisely 4n2C,, and this is clearly less than A/; thus if (11) does not hold
then again we have the conclusion H < M.

For the final deduction we note that since

| — oD > (2~

and both |«V| and |«®| do not exceed n#, an appropriate choice for Cy, is (2n#)%*. Further,

by (41) of B together with (6) and (7), we deduce that a suitable value for C,; is €2**¢2. Thus
1

we conclude that max ([x], []) < mi/n(2n)90 22 can,

Now the number on the right certainly does not exceed e***C2¥ and it remains therefore

only to Verify that 4:”202 M < %n’ﬂyf”nz—!— (lOg M)K.
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But since v > 32n% we see that
4n2C,C" < {2bnionzpny < {(2n) oy,

and so the assertion is assuredly valid if C” > (log A)*. On the other hand, if C" < (log 4)~,
then clearly logm > C”12<) and hence

log 4 < 100n!'C,logm < C"logm < (log m)1+2/»,
But this implies that

4n2C, (log A)< < C"(log A)< < (log m)<+2K+lv,

and it is readily confirmed that the exponent of log 7 on the extreme right does not exceed «.
Thus again the assertion is well-founded, and the proof of theorem 2 is complete.

6. COMPLETION OF PROOF OF THEOREM 1

It remains only to prove the strengthened special case of theorem 2 enunciated at the
beginning of § 2. By observations similar to those recorded at the beginning of § 5, it clearly
suffices to assume that the coefficient of #% in f(x,y) is 1, and thence to obtain the con-
clusion that all solutions in integers x, y of f(x,y) = m, where m denotes a positive integer
not exceeding 2, satisfy

max ( fxl, lyi) < exp {(10Ms¢)5x10°),
Now by the arguments of § 5 we reach the inequality
max (|« |y]) < e36C:M,

where C, and M are defined as above with n = 3 and with « representing any number > 4.
But, by virtue of the supposition m < #2 it is clear that M = C’, and so we have now
merely to verify that, for some «,

36C,C’ < (10145)5%10°, (12)
Itis easily seen that p, as defined in § 5, assumes is smallest value when «" = (1+4./2) (n+1).
Accordingly we take « = 4(1+2,/2), whence we have
k' =4(14./2) and p=96(3+2/2) < 560.
Noting now that C’ < {24r+6319]0g B}P,

that log B = 90C, and that also C, < 3¥5%, it readily follows that the number on the left
of (12) does not exceed 363455 (2786 , 366 . 1 0560,

A simple calculation shows that the above expression is less than (10145#)5%1%°) and this
completes the proof of theorem 1.
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